Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 823-8, 2012.
Article in English | WPRIM | ID: wpr-636643

ABSTRACT

Death following situations of intense emotional stress has been linked to the cardiac pathology described as stress cardiomyopathy, whose pathomechanism is still not clear. In this study, we sought to determine, via an animal model, whether the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1alpha (PGC-1α) and the amino peptide neuropeptide Y (NPY) play a role in the pathogenesis of this cardiac entity. Male Sprague-Dawley rats in the experimental group were subjected to immobilization in a plexy glass box for 1 h, which was followed by low voltage electric foot shock for about 1 h at 10 s intervals in a cage fitted with metallic rods. After 25 days the rats were sacrificed and sections of their hearts were processed. Hematoxylin-eosin staining of cardiac tissues revealed the characteristic cardiac lesions of stress cardiomyopathy such as contraction band necrosis, inflammatory cell infiltration and fibrosis. The semi-quantitative RT-PCR analysis for PGC-1α mRNA expression showed significant overexpression of PGC1-α in the stress-subjected rats (P<0.05). Fluorescence immunohistochemistry revealed a higher production of NPY in the stress-subjected rats as compared to the control rats (P=0.0027). Thus, we are led to conclude that following periods of intense stress, an increased expression of PGC1-α in the heart and an overflow of NPY may lead to stress cardiomyopathy and even death in susceptible victims. Moreover, these markers can be used to identify stress cardiomyopathy as the cause of sudden death in specific cases.

2.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 823-828, 2012.
Article in English | WPRIM | ID: wpr-343174

ABSTRACT

Death following situations of intense emotional stress has been linked to the cardiac pathology described as stress cardiomyopathy, whose pathomechanism is still not clear. In this study, we sought to determine, via an animal model, whether the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1alpha (PGC-1α) and the amino peptide neuropeptide Y (NPY) play a role in the pathogenesis of this cardiac entity. Male Sprague-Dawley rats in the experimental group were subjected to immobilization in a plexy glass box for 1 h, which was followed by low voltage electric foot shock for about 1 h at 10 s intervals in a cage fitted with metallic rods. After 25 days the rats were sacrificed and sections of their hearts were processed. Hematoxylin-eosin staining of cardiac tissues revealed the characteristic cardiac lesions of stress cardiomyopathy such as contraction band necrosis, inflammatory cell infiltration and fibrosis. The semi-quantitative RT-PCR analysis for PGC-1α mRNA expression showed significant overexpression of PGC1-α in the stress-subjected rats (P<0.05). Fluorescence immunohistochemistry revealed a higher production of NPY in the stress-subjected rats as compared to the control rats (P=0.0027). Thus, we are led to conclude that following periods of intense stress, an increased expression of PGC1-α in the heart and an overflow of NPY may lead to stress cardiomyopathy and even death in susceptible victims. Moreover, these markers can be used to identify stress cardiomyopathy as the cause of sudden death in specific cases.


Subject(s)
Animals , Rats , Cardiomyopathies , Metabolism , Myocytes, Cardiac , Metabolism , Neuropeptide Y , Metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Rats, Sprague-Dawley , Stress, Physiological , Physiology , Transcription Factors , Metabolism
3.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 335-41, 2011.
Article in English | WPRIM | ID: wpr-635110

ABSTRACT

This study investigated the role of reactive oxygen species (ROS) in the pathogenesis of triptolide-induced renal injury in vivo. Rats were randomly divided into 4 groups (n=5 in each): triptolide group in which the rats were intraperitoneally injected with triptolide solution at a dose of 1 mg/kg of body weight on day 8; control group in which the rats received a single intraperitoneal injection of 0.9% physiological saline on day 8; vitamin C group in which the rats were pretreated with vitamin C by gavage at a dose of 250 mg/kg of body weight per day for 7 days before the same treatment as the control group on day 8; triptolide+vitamin C group in which the rats were first subjected to an oral administration of vitamin C at a dose of 250 mg/kg of body weight per day for 7 days, and then to the same treatment as the triptolide group on day 8. All the rats were sacrificed on day 10. Blood samples were collected for detection of plasma creatinine (Pcr) and plasma urea nitrogen (PUN) concentrations. Both kidneys were removed. The histological changes were measured by haematoxylin-eosin (HE) staining. The production of ROS was determined by detecting the fluorescent intensity of the oxidation-sensitive probe rhodamine 123 in renal tissue. Renal malondialdehyde (MDA) content was measured to evaluate lipid peroxidation level in renal tissue. TUNEL staining was performed to assess apoptosis of renal tubular cells. Renal expression of apoptosis-related proteins Bcl-2, Bax, Bid, Bad, Fas and FasL, as well as corresponding encoding genes were assessed by Western Blotting and real-time PCR. The results showed that triptolide treatment promoted the generation of a great amount of ROS, up-regulated the expression of Bax, Bid, Bad, Fas and FasL at both protein and mRNA levels, as well as the ratio of Bax to Bcl-2, and caused the apoptosis of renal tubular cells and renal injury. However, pretreatment with an antioxidant, vitamin C, significantly reduced the generation of ROS and effectively inhibited the triptolide-induced apoptosis of renal tubular cells and renal injury. It was concluded that ROS plays a critical role in triptolide-induced apoptosis of renal tubular cells and renal injury. The protective administration of vitamin C may help alleviate triptolide-induced renal injury and nephrotoxicity.

4.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 546-550, 2010.
Article in Chinese | WPRIM | ID: wpr-349786

ABSTRACT

The aim of the present study was to assess whether Fourier transform infrared spectrometry (FTIR)micro-spectroscopy could produce distinct spectral information on protein of old myocardial infarction(OMI)and to set them as molecular markers to diagnose atypical OMI.Paraffin-embedded heart samples were derived from victims dying of OMI.In combination with histological stain,FTIR and infrared micro-spectroscopy,the characteristics of OMI were analyzed morphologicallyand molecularly.The most relevant bands identified were the amide A,B,Ⅰ and Ⅱ,showing crucial spectral differences between apparent normal region and OMI region,including the peak position blue shift and the increased intensity of OMI,moreover relative increase in a-helix and decrease in β-sheet of protein secondary structures in OMI.Comparing to single spectral band,the I1650/I1550 ratio was increased and rationally used as a molecular marker for diagnosing OMI.These novel preliminary findings supported further exploration of FTIR molecular profiling in clinical or forensic study,and were in accordance with histopathology.

SELECTION OF CITATIONS
SEARCH DETAIL